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A similar development may be applied to the piezometric data to

obtain the expanded form (9):
—InN1 = (AVo/RT) (P-Po) {(1 - 1/2AVo) [ (dV/dP) —
(dV/dP)] (P-Po)}. (4)
= A'AP[l + B'AP}, (4a)
where

A’ = AVo/RT

B = (1/2AVo) [(dV/dP); — (dV]|dP).]

(dV/dP) = molar compressability coefficient of the liquid (/) or solid
(c) phase at the pressure Po and temperature T.

Equation 4 takes into account the change in volumes of the solid
and liquid phases during the changing pressure of the fusion. The simi-
larity of the forms of equation 3 and 4 seemed to justify the extrapo-
lation of the time-pressure data by hyperbolic equations similar to those
used for the time-temperature data.

The pressure, P, and time, ., at which an infinitesimal amount of
solid is in equilibrium with liquid were obtained by fitting the values
in the liquid-solid region to a curve and extrapolating to the intersection
with the time-pressure curve for the liquid. The time, ts, when the
sample would have been completely solid, if pure, was obtained by
extrapolating the time-pressure curve for the solid to the pressure, P.
The interval (t« — 73) was taken as the duration of the transition and
was used to calculate AVo (the volume change for the transition).

(%) A derivation of this equation follows:
The basic differential equation at constant temperature is:

V: —
—dInN, = (%) dp = (AV/RT) dp (a)

Let: AV = AVo + (ki — ko) (P — Po), (b)

where : Po is the pressure when N; = 1; P is the pressure when Ny = Nj:
and k is dV/dP for each phase.
Substitute for AV into equation (a):

;\V aE (kl—kc) (P—PO) dP.

—dinNy = RT

(c)

AVo ; (ki — ko) (P — PO)~Z

RT (P—Po) + RT 5 .
Rearrange and substitute for k:

—InN1 = (AVo/RT) (P — Po)

{1+ (12AVo) [(dV/dP) —(dV dP)] (P — Po)}. (d)

Integrate: —/nN; =




