A similar development may be applied to the piezometric data to obtain the expanded form (${ }^{9}$):

$$
\begin{align*}
-\ln \mathrm{N}_{\mathrm{l}} & =\left(\Delta \mathrm{V}_{\mathrm{o}} / \mathrm{RT}\right)\left(\mathrm{P}-\mathrm{P}_{\mathrm{o}}\right)\left\{\left(1-1 / 2 \Delta \mathrm{~V}_{\mathrm{o}}\right) \underset{\left.\left.(d \mathrm{~V} / d \mathrm{P})_{c}\right]\left(\mathrm{P}-\mathrm{P}_{\mathrm{o}}\right)\right\},}{ }\right. & \\
& =\mathrm{A}^{\prime} \Delta \mathrm{P}\left[1+\mathrm{B}^{\prime} \Delta \mathrm{P}\right], & \tag{4}
\end{align*}
$$

where
$\mathrm{A}^{\prime}=\Delta \mathrm{V}_{\mathrm{o}} / \mathrm{RT}$
$\mathrm{B}^{\prime}=\left(1 / 2 \Delta \mathrm{~V}_{\mathrm{o}}\right)\left[(d \mathrm{~V} / d \mathrm{P})_{t}-(d \mathrm{~V} / d \mathrm{P})_{c}\right]$
$(d \mathrm{~V} / d \mathrm{P})=$ molar compressability coefficient of the liquid (l) or solid (c) phase at the pressure P_{o} and temperature T .

Equation 4 takes into account the change in volumes of the solid and liquid phases during the changing pressure of the fusion. The similarity of the forms of equation 3 and 4 seemed to justify the extrapolation of the time-pressure data by hyperbolic equations similar to those used for the time-temperature data.

The pressure, P , and time, t_{a}, at which an infinitesimal amount of solid is in equilibrium with liquid were obtained by fitting the values in the liquid-solid region to a curve and extrapolating to the intersection with the time-pressure curve for the liquid. The time, t_{b}, when the sample would have been completely solid, if pure, was obtained by extrapolating the time-pressure curve for the solid to the pressure, P. The interval $\left(t_{a}-t_{b}\right)$ was taken as the duration of the transition and was used to calculate ΔV_{0} (the volume change for the transition).
$\left.{ }^{(9}\right)$ A derivation of this equation follows:
The basic differential equation at constant temperature is:

$$
\begin{equation*}
-d l \mathrm{n} \mathrm{~N}_{1}=\left(\frac{\mathrm{V}_{l}-\mathrm{V}_{c}}{\mathrm{RT}}\right) d p=(\Delta \mathrm{V} / \mathrm{RT}) d p \tag{a}
\end{equation*}
$$

Let: $\Delta \mathrm{V}=\Delta \mathrm{V}_{\mathrm{o}}+\left(k_{l}-k_{c}\right)(\mathrm{P}-\mathrm{Po})$,
where : P_{0} is the pressure when $N_{1}=1 ; P$ is the pressure when $N_{1}=N_{1}$; and k is $d \mathrm{~V} / d \mathrm{P}$ for each phase.

Substitute for $\Delta \mathrm{V}$ into equation (a):

$$
\begin{equation*}
-d l \mathrm{n} \mathrm{~N}_{1}=\frac{\Delta \mathrm{V}+\left(k_{l}-k_{c}\right)\left(\mathrm{P}-\mathrm{P}_{\mathrm{o}}\right)}{\mathrm{RT}} d \mathrm{P} . \tag{c}
\end{equation*}
$$

Integrate: $-\ln \mathrm{N}_{1}=\frac{\Delta \mathrm{V}_{\mathrm{o}}}{\mathrm{RT}}\left(\mathrm{P}-\mathrm{P}_{0}\right)+\frac{\left(k_{l}-k_{c}\right)}{\mathrm{RT}} \frac{\left(\mathrm{P}-\mathrm{P}_{0}\right)^{2}}{2}$.
Rearrange and substitute for k :
$-\ln \mathrm{N}_{1}=\left(\Delta \mathrm{V}_{\mathrm{o}} / \mathrm{RT}\right)\left(\mathrm{P}-\mathrm{P}_{\mathrm{o}}\right)$

$$
\begin{equation*}
\left\{1+\left(1 / 2 \Delta \mathrm{~V}_{0}\right)\left[(d \mathrm{~V} / d \mathrm{P})_{l}-(d \mathrm{~V} / d \mathrm{P})_{c}\right](\mathrm{P}-\mathrm{P})\right\} . \tag{d}
\end{equation*}
$$

